Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Toxicol Res (Camb) ; 13(2): tfae041, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38617713

ABSTRACT

Aim: To explore the effect of Dexmedetomidine (DEX) on lung injury in patients undergoing One-lung ventilation (OLV). Methods: Esophageal cancer patients undergoing general anesthesia with OLV were randomly divided into the DEX group and control group, with 30 cases in each group. Mean arterial pressure (MAP), heart rate (HR), arterial partial pressure of oxygen (PO2), and arterial partial pressure of nitrogen dioxide (PCO2) were recorded at the time points after anesthesia induction and before OLV (T1), OLV 30 min (T2), OLV 60 min (T3), OLV 120 min (T4), OLV end before (T5) and before leaving the room (T6) in both groups. Reverse Transcription-Polymerase Chain Reaction (RT-qPCR) was applied to detect the levels of CC16 mRNA. Enzyme-linked immunosorbent assay (ELISA) was used to detect serum CC16 protein levels. The content of malondialdehyde (MDA) in serum was determined by thio barbituric acid (TBA) method. ELISA was used to measure the concentrations of TNF-α (tumor necrosis factor-alpha)/and IL-6 (interleukin 6). Results: DEX treatment slowed down HR at time points T1-T6 and increased PO2 and PCO2 at time points T2-T5 compared with the control group. Moreover, at time points T2-T6, DEX treatment reduced the levels of club cell secretory protein-16 (CC16) mRNA and serum CC16 protein levels. Furthermore, DEX treatment caused the reduction of MDA, TNF-α and IL-6 concentrations in serum of patients. Conclusion: During the OLV process, DEX could reduce serum CC16 protein levels, inhibit inflammatory reactions and oxidative stress, and improve oxygenation index, indicating a protective effect on lung injury during OLV.

2.
Pest Manag Sci ; 80(2): 404-413, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37708325

ABSTRACT

BACKGROUND: Sugar beet (Beta vulgaris ssp. vulgaris), a key crop for sugar production, faces significant yield losses caused by the black bean aphid Aphis fabae (Scop.) and the green peach aphid Myzus persicae (Sulzer), which also transmits viruses. The restriction on neonicotinoid usage in Europe has intensified this problem, emphasizing the urgent need for breeding resistant crop varieties. This study evaluated 26 sugar beet germplasms for resistance against both aphid species by using performance and feeding behavior assays. Additionally, whole plant bioassays and semi-field experiments were carried out with Myzus persicae. RESULTS: Our findings demonstrate the presence of temporal resistance against both aphid species in the primary sugar beet gene pool. Beet yellows virus (BYV) carrying aphids showed enhanced performance. Different levels of plant defense mechanisms were involved including resistance against Myzus persicae before reaching the phloem, particularly in sugar beet line G3. In contrast, resistance against Aphis fabae turned out to be predominately phloem-located. Furthermore, a high incidence of black inclusion bodies inside the stomach of Myzus persicae was observed for approximately 85% of the plant genotypes tested, indicating a general and strong incompatibility between sugar beet and Myzus persicae in an initial phase of interaction. CONCLUSION: Sugar beet resistance against aphids involved different mechanisms and is species-specific. The identification of these mechanisms and interactions represents a crucial milestone in advancing the breeding of sugar beet varieties with improved resistance. © 2023 Julius Kühn-Institut and The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Subject(s)
Aphids , Beta vulgaris , Animals , Aphids/genetics , Beta vulgaris/genetics , Plant Breeding , Feeding Behavior , Pest Control , Vegetables
3.
Materials (Basel) ; 16(13)2023 Jun 23.
Article in English | MEDLINE | ID: mdl-37444857

ABSTRACT

Erosion and the stripping effect of moisture on asphalt mixtures is one of the main reasons for the shortened service life of asphalt pavements. The common mean of preventing asphalt pavements from being damaged by moisture is adding anti-stripping agents (ASAs) to asphalt mixtures. However, the effect regularity and mechanism of anti-stripping agents on the physicochemical properties of asphalt is not exactly defined. This study compared the physical properties of ASA-modified asphalt (AMAs) to determine the optimal dosage and investigated the rheological and adhesion properties. Based on the roller bottle method and water immersion method, the moisture susceptibility of AMAs with three particle sizes was investigated. The results showed that the modification of asphalt using anti-stripping agents was a physical modification. At the optimum dosage of anti-stripping agents (0.3%), the basic physical properties of AMA1 were the most desirable. ASA2 increased the resistance of asphalt for deformation at high temperature by 46%, and AMA3 had the best low-temperature performance. ASAs enhanced the dispersed and polar components in the asphalt binder, improving the adhesion energy of asphalt. AMA3 had the strongest adhesion to the aggregate, with an increase in adhesion work by 2.8 times and a 45% of increase in ER value. This was attributed to ASA3 containing with a large number of metal cations and polar functional groups. It was shown that ASAs provided the most improvement in the anti-stripping performance of asphalt mixtures with 9.5-13.2 mm particles. The amide ASA, phosphate ASA and aliphatic amine ASA improved the water damage resistance of asphalt by 65%, 45% and 78%, respectively. This study can help engineers realize the effects of different types of ASAs on the physicochemical properties of asphalt and select the most suitable type of ASAs according to the service requirements.

4.
Org Lett ; 25(26): 4918-4922, 2023 Jul 07.
Article in English | MEDLINE | ID: mdl-37377381

ABSTRACT

A general and facile approach for the direct oxidative α-acyloxylation of ketones using molecular oxygen as the oxidant is developed. This method avoids the use of excessive peroxides and expensive metal catalysts, affording a variety of α-acyloxylated ketones in satisfactory yields. Experimental studies indicate that the reaction proceeds via a radical pathway. Additionally, α-hydroxy ketones could be obtained by changing the solvent.

5.
Ann Transl Med ; 10(19): 1053, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36330412

ABSTRACT

Background: The high-frequency electrotome (ES), which is widely used in surgical procedures, generates surgical smoke that is potentially hazardous to operating personnel. Previous research shows that the PlasmaBlade (PB) may be able to overcome this problem. The present study set out to analyze potentially hazardous surgical smoke generated during electrosurgery by the ES, the PB, and. a new surgical system that applies low-temperature plasma, the NTS-100. Methods: In vitro and in vivo healthy porcine models were used to compare volatile organic compounds (VOCs) and particulate matter (PM) in smoke generated by the NTS-100, the PB, and the conventional ES when cutting liver, muscle, and skin and subcutaneous tissues. The detected indexes included the VOCs in surgical smoke, the concentration and percentage of each part, the PM2.5 concentration, the mass of particles, and the diameter distribution of particles. Results: The smoke generated by the NTS-100 contained fewer hazardous components than that generated by the ES (P<0.05) and a comparable amount to that generated by the PB (P>0.05). The PM2.5 concentration and mass of particles in the smoke generated by the NTS-100 were lower than those with the ES (P<0.05 and P<0.01, respectively) and similar to those with the PB (P>0.05). The NTS-100 generated larger particles than did the ES and the PB (P<0.05). Conclusions: Surgical smoke contains harmful VOCs and PM, but the NTS-100 generated less hazardous surgical smoke than did the conventional ES and performed comparably to the PB. Therefore, using the NTS-100 may reduce the potential hazard of surgical smoke to operating room personnel.

6.
Chem Biol Interact ; 367: 110114, 2022 Nov 01.
Article in English | MEDLINE | ID: mdl-36027947

ABSTRACT

Dexmedetomidine (DEX) displays a neuroprotective role in aged rats with isoflurane (ISO)-induced cognitive impairment through antioxidant, and anti-inflammatory, and anti-apoptotic effects. Therefore, the present study was performed to define the molecular mechanism of DEX on ISO-induced neurological impairment in aged rats in relation to the MEK1/ERK1/Nrf2/HO-1 axis. The study enrolled elderly patients undergoing ISO anesthesia. Patient cognitive function following treatment with DEX was evaluated using mini-mental state examination (MMSE). The results revealed that DEX supplementation of anesthesia contributed to higher MMSE scores in patients one week post treatment. Rat model of neurological impairment was also induced in 18-month-age Wistar rats by ISO, followed by DEX treatment. Based on the results of Morris water maze experiment, ELISA, and TUNEL and hematoxylin-eosin staining, in vivo experiments confirmed that DEX could reduce the oxidative stress and neurological damage induced by ISO in rats. DEX activated the nuclear factor erythroid 2-related factor (Nrf2)/Heme Oxygenase 1 (HO-1) pathway. DEX upregulated the expression of Nrf2 and HO-1 by activating the MEK1/ERK1 pathway, whereby attenuating the ISO-caused oxidative stress and neurological damage in rats. Collectively, DEX suppresses the ISO-induced neurological impairment in the aged rats by promoting HO-1 through activation of the MEK1/ERK1/Nrf2 axis.


Subject(s)
Dexmedetomidine , Isoflurane , Animals , Anti-Inflammatory Agents/pharmacology , Antioxidants/metabolism , Dexmedetomidine/pharmacology , Eosine Yellowish-(YS)/pharmacology , Hematoxylin/pharmacology , Heme Oxygenase-1/metabolism , Isoflurane/toxicity , MAP Kinase Kinase 1/metabolism , MAP Kinase Kinase 1/pharmacology , NF-E2-Related Factor 2/metabolism , Oxidative Stress , Rats , Rats, Sprague-Dawley , Rats, Wistar
7.
J Org Chem ; 87(7): 4764-4776, 2022 04 01.
Article in English | MEDLINE | ID: mdl-35319891

ABSTRACT

A practical and scalable protocol for electrochemical arylation of quinoxalin(on)es with arylhydrazine hydrochlorides under mild conditions has been developed. This method exhibits high efficiency, easy scalability, and broad functional group tolerance. Various quinoxalin(on)es and arylhydrazines underwent this transformation smoothly in an undivided cell, providing the corresponding aryl-substituted quinoxalin(on)es in moderate to good yields. A radical mechanism is involved in this arylation reaction.


Subject(s)
Oxidative Stress , Quinoxalines , Catalysis , Molecular Structure , Oxidation-Reduction
8.
Acta Histochem ; 123(5): 151734, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34048989

ABSTRACT

Rat hippocampal neurons were isolated and divided into Normal, oxygen glucose deprivation/reoxygenation (OGD/R), OGD/R + DEX, OGD/R + NC mimic, OGD/R + miR-155 mimic and OGD/R + DEX + miR-155 mimic groups. In OGD/R group, LDH, ROS and MDA levels and apoptosis rate was increased, with up-regulations of miR-155, Cyt c and Bax/Bcl-2 ratio, but decreases of SOD, GSH-Px and MMP levels, as well as down-regulations of p-ERK1/2/ERK1/2. As compared to the OGD/R group, parameters above in the OGD/R + DEX group were ameliorated evidently, while OGD/R + miR-155 mimic group manifested the opposite changes. Besides, miR-155 mimic could abolish the protective effect of DEX on the hippocampal neurons under OGD/R. DEX, via down-regulating the expression of miR-155, could activate the ERK1/2 pathway, thereby mitigating the apoptosis and oxidative stress injury and increasing the MMP, thereby protecting hippocampal cells from OGD/R injury.


Subject(s)
Apoptosis , Dexmedetomidine/pharmacology , MAP Kinase Signaling System , MicroRNAs/biosynthesis , Animals , Animals, Newborn , Cell Survival/drug effects , Glucose/metabolism , Hippocampus/metabolism , Male , Membrane Potential, Mitochondrial , Neurons/metabolism , Oxidative Stress , Oxygen , Rats , Rats, Sprague-Dawley , Reactive Oxygen Species
9.
Neuropathology ; 39(1): 30-38, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30592096

ABSTRACT

This work attempts to discuss whether dexmedetomidine (Dex) can protect rats from postoperative cognitive dysfunction (POCD) through regulating the γ-aminobutyric acid-B receptor (GABAB R)-mediated cyclic adenosine monophosphate (cAMP) - protein kinase A (PKA) - cAMP-response element binding (cAMP-PKA-CREB) signaling pathway. Sprague-Dawley rats were divided into a non-surgical group (Control), a surgical group (Model), a surgical group treated with Dex (Model + Dex), a surgical group treated with GABAB R antagonist (Model + CGP 35348) and a surgical group treated with Dex and GABAB R agonist (Model + Dex + Baclofen). Cognitive and memory functions were evaluated by Y-maze test and open-field test. The neuronal morphology of the hippocampus was observed by hematoxylin and eosin staining and neuronal apoptosis was by terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick-end labeling method. Inflammatory factors and cAMP levels were detected by enzyme-linked immunosorbent assay while expressions of GABAB R and PKA-CREB pathway-related molecules by Western blot. Compared with control rats, the model rats exhibited reduced alternation rates with a prolonged time spent in the central zone; meanwhile, levels of tumor necrosis factor-α and interleukin-1ß and the apoptotic index, as well as GABAB R1 and GABAB R2 expressions were increased in the model rats, but the cAMP-PKA-CREB pathway was inhibited (all P < 0.05). When treated with either Dex or CGP 35348, the surgical rats displayed an opposite tendency concerning the above factors as compared to the model rats (all P < 0.05). Furthermore, Baclofen, the agonist of GABAB R, could reverse the protective effect of Dex against POCD in rats. Dex protects rats from POCD possibly via suppressing GABAB R to up-regulate the cAMP-PKA-CREB signaling pathway, thereby alleviating the hippocampal inflammation caused by surgical trauma.


Subject(s)
Cognitive Dysfunction/prevention & control , Cyclic AMP Response Element-Binding Protein/metabolism , Cyclic AMP-Dependent Protein Kinases/metabolism , Cyclic AMP/metabolism , Dexmedetomidine/administration & dosage , Neuroprotective Agents/administration & dosage , Postoperative Complications , Receptors, GABA-B/metabolism , Animals , Apoptosis/drug effects , Cognitive Dysfunction/etiology , Cognitive Dysfunction/metabolism , Encephalitis/complications , Encephalitis/metabolism , Hippocampus/drug effects , Hippocampus/metabolism , Hippocampus/pathology , Male , Neurons/drug effects , Neurons/pathology , Rats, Sprague-Dawley , Signal Transduction
10.
PLoS One ; 11(12): e0168848, 2016.
Article in English | MEDLINE | ID: mdl-28002486

ABSTRACT

In recent years, Apolygus lucorum has caused increasing damage to cotton and fruit trees in China. The salivary enzymes secreted by A. lucorum when sucking on host plants induce a series of biochemical reactions in plants, and the pre-oral digestion benefits the bug feeding. In this study, the food intake of A. lucorum from 1st instar nymphs to adults was measured, and the corresponding salivary activity of pectinase, amylase, cellulase, protease, polyphenol oxidase and peroxidase was determined. Daily food intake varied with developmental stage, peaking in 3rd and 4th instar nymphs. Pectinase, amylase, cellulase and protease were detected in both nymphal and adult saliva of A. lucorum, while neither polyphenol oxidase nor peroxidase was detected. Protease activity varied with food intake peaking at the 3rd-4th instar, and then slightly decreasing at the 5th instar. Levels of pectinase, amylase and cellulase increased significantly with the daily feeding level until the 3rd instar, corresponding with increasing damage to host plants. The activity of both cellulase and protease had a significant linear relationship with the average daily food intake. The increasing activity of enzymes in saliva explain stage-specific impacts of A. lucorum on the host plants, and suggest that optimal management of A. lucorum would be confined to its control threshold prior to the peak of daily feeding in the 3rd instar.


Subject(s)
Hemiptera/enzymology , Hemiptera/growth & development , Hydrolases/metabolism , Amylases/metabolism , Animals , Cellulase/metabolism , Eating , Enzyme Assays , Hemiptera/metabolism , Life Cycle Stages , Nymph/enzymology , Nymph/metabolism , Peptide Hydrolases/metabolism , Polygalacturonase/metabolism , Salivary Glands/enzymology
SELECTION OF CITATIONS
SEARCH DETAIL
...